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Gray matter of the cerebrum not cross the midline (PREVIOUS SLIDE).
Gray matter of the cerebellum spans the midline (this slide).
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PART I



The Cerebellum
Latin for “The little brain”
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The unfolded cerebellum
Is 2.3 meters long
(Heck & Sultan 2002):
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10 Folia One lobe is called a folium

Folds are called folia or lobes. There are 10:
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The cerebellum by the numbers

Cerebellum is 11% of the brain by weight

Each granule cell makes 200 synapses

There are 10'° to 10 granule cells in the cerebellum, which is more than all
other cells in the brain. There are 9x101° neurons in the brain*.

Each Purkinje cell receives 500 climbing fiber synapses (Wadiche & Jahr, 2001).
Each Purkinje cell receives 175,000 parallel fiber synapses (Napper & Harvey,
1998).

There are 40-50 thousand beams in the cerebellum (Heck & Sultan 2002).
Output is to the Deep Cerebellar Nucleus (DCN) and is inhibitory.

* en.wikipedia.org/wiki/List_of _animals_by number_of neurons



Cellular Organization of the Cerebellum
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Bergmann glia

are a type of radial glia.

guide interneuron
arborization onto
Purkinje cells.

serve as guideposts for
Purkinje cell and
granule cell migration
during development,
but unlike other radial
glia in the brain,
Bergmann glia persist in
adults and function in
synaptic pruning.

Other cerebellar glia: GFAP
positive glia & Aif1/Ibal
positive microglia.

Bergmann Glia
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Interneurons

Synaptic inputs to
Purkinje cells

Bergmann Glia

Chao et al., 2009.



The principal cerebellum
neurotransmitters

e Glutamate is the principal neurotransmitter
in excitatory granule cell-Purkinje cell
synapse.

* Purkinje cells release GABA and is inhibitory.



Cellular Connections in the Cerebellum
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Cellular Connections in the Cerebellum
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Beams and Parasagittal Bands of Purkinje Cells
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Beams of Purkinje cells are
activated by mossy fibers

Parasagittal bands of Purkinje cells
are activated by climbing fibers

Rokni D, Llinas R & Yarom Y. The morpho/functional discrepancy
in the cerebellar cortex: looks alone are deceptive. Frontiers in
Neuroscience 2(2):192-8 (2008).



Cerebellar Peduncles

Superior peduncle

Inferior peduncle

Peduncle means stalk.

Trigeminal
NErve

Pyramid

Olive

Inferior peduncle Gray’s Anatomy

The cerebellar peduncles are white matter tracts connecting the cerebellum and the

remaining CNS (5). They occur in 3 pairs:

. Inferior peduncles communicate sensory information about limb positions.
Middle peduncles communicate information on the desired limb positions.
Superior peduncles communicates information to the midbrain (pons, medulla

oblongata) and spinal cord to stimulate or inhibit muscles into the desired positions.



Main Cerebellar Outputs (efferents)
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Main Cerebellar Inputs (afferents)
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Inputs do not synapse in Deep Cerebellar Nuclei
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Cerebellar afferents & efferents cross, but not
the spinocerebellar tracts.
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Spinocerebellar tracts travel the same side of the body. This is a
reason for a key concept in clinical neurology:

Cerebellar signs are ipsilateral.



Some key points:

All outputs originate from PCs and connect in the
DCN.

* Mossy Fiber and Climbing Fiber inputs activate the
cortical inhibitory loop at Granule Cells and
Purkinje cells.

* Mossy Fibers and Climbing Fibers activate the
deep excitatory loop at the DCN.

* Mossy fiber inputs to DCN and Parallel Fiber inputs
to PCs are hypothesized points of synaptic
plasticity in motor learning:



The Cerebellar Circuit (Meera et al., submitted)
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Purkinje Cell Compartmentation
Observations that the cerebellar cortex is not homogeneous has recently led to the discovery
of microcircuits that are redefining the classical view of cerebellar circuitry.
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From
https://www.bcm.edu/research/
labs/roy-sillitoe/gallery

Zebrin 1l

All Purkinje cells are not created equally. For anybody doing research on the
cerebellum, this has relevance to how you preform your dissections.



Compartmentation seen for PLCB3 in the Allen Brain Atlas

http://mouse.brain-map.org/

ISH veiw Expression mask



PART 11



Spinocerebellar Ataxias

e Spinocerebellar Ataxias

e Neurodegenerative Disorders
o Affect primarily cerebellum

e Often Purkinje cells

e Autosomal dominant
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The SCA2 Gene

A
Normal: 22Q
Mutant: >32Q
Ataxia Plus
*CAG Repeat codes for Slow saccadic eye movements

glutamine (Q). More or less pure

DOPA-responsive PD
ALS-like

Pulst et al, Nature Genet 1996



SCA2

Caused by CAG repeat expansion mutation in the ATXN2 gene,
encoding “ataxin-2"

The normal gene has CAG repeat of structure interrupted by
CAAs:
(CAG)8CAA(CAG)4CAA(CAG)8

The mutant ATXNZ2 has pure CAGs of lengths from 33 to >200
repeats

(CAG), Stablity is lost

The normal ataxin-2 interacts with RNA binding proteins:
A2BP1/FOX1, PABP1, the ALS protein TDP-43



Prevalence rate in Eastern Cuba
(per 100,000 people)
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Velazquez Perez et al. Neurosci. Lett.
454:157-60; 2009.




Dynamic Mutation as the Cause of Anticipation
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Slide provided by Stefan Pulst
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Age dependent reduction of Cerebellar molecular
layer thickness in SCA2 mice.
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Purkinje neuron morphology

WILDTYPE ATXN2-Q127, 24 wks



PC Firing is abnormal in SCA2 tg Mice.

Extracellular recordings from acute slices

Wild Type
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Hansen et al., 2013



SCA2 Therapeutics



Spinocerebellar Ataxia Type 2 (SCAZ2)

SCA2 is a dominantly inherited polyglutamine disorder
caused by ATXNZ2 mutation that causes ataxia.

Characterized by gain of toxic function & Purkinje cell death.

We hypothesize that lowering ATXN2 expression will be
therapeutic for SCA2



Antisense oligonucleotide (ASO) structure and action
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Antisense oligonucleotides inhitibing ATXN2 expression

Collaboration with ISIS Pharmaceuticals Real Time PCR
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In vivo tests using Pcp2-ATXN2-Q127 mice
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ATXN2 ASO reduced rotarod phenotype onset in
ATXN2-Q127 mice
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ASOY7 restored the Purkinje cell firing frequency of Q127 mice

Extracellular Recordings — Meera Pratap & Tom Otis
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Ataxin-2 action on CaZ* movement in Purkinje
cells from ATXNZ2 transgenic mice

Elevated cytoplasmic calcium is associated pathologically
with reduced PC intrinsic firing frequency.
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Video of SCA2 Patients

(video will not play in this version)



Cerebellar disorders
* Spinocerebellar Ataxias
o SCA1-SCA39,
o Dominantly inherited
o Polyglutamine: SCA1, 2, 3,6,7, 17
* Friedreich Ataxia
o FXN mutation, encodes frataxin, GAA repeat in intron 1
o Recessive
* Ataxia-telangiectasia
o ATM gene, LOF point mutations
o Recessive
o Lymphoid and other tumors, p53 LOF related.
* Episodic Ataxias
o Different genes
o Most commonly recessive
* Paraneoplastic Cerebellar Degeneration
o Commonly cancer related



The cerebellum contributes to cognition: Schmahmann Syndrome

Schmahmann JD. The role of the cerebellum in cognition and emotion: personal
reflections since 1982 on the dysmetria of thought hypothesis, and its historical
evolution from theory to therapy. (Schmahmann et al., 2010).

Abstract

The cognitive neuroscience of the cerebellum is now an established multidisciplinary
field of investigation. This essay traces the historical evolution of this line of inquiry
from an emerging field to its current status, with personal reflections over almost
three decades on this journey of discovery. It pays tribute to early investigators who
recognized the wider role of the cerebellum beyond motor control, traces the
origins of new terms and concepts including the dysmetria of thought theory, the
universal cerebellar transform, and the cerebellar cognitive affective syndrome, and
places these developments within the broader context of the scientific efforts of a
growing community of cerebellar cognitive neuroscientists. This account considers
the converging evidence from theoretical, anatomical, physiological, clinical, and
functional neuroimaging approaches that have resulted in the transition from
recognizing the cerebellar incorporation into the distributed neural circuits
subserving cognition and emotion, to a hopeful new era of treatment of
neurocognitive and neuropsychiatric manifestations of cerebellar diseases, and to
cerebellar-based interventions for psychiatric disorders.




Assigned Reading

This is a short essay that discusses the cerebellum role in cognition and
challenges the concept:

Glickstein M. What does the cerebellum really do? Current Biology
17(19): R824—R827 (2007).

Compared to other parts of the brain the cerebellar circuit is simple. But the
overall function of the cerebellum is complex. This discusses the cerebellum
differences from other parts of the brain and its function in an “overall”
context:

Heck D & Sultan F. Cerebellar structure and function: Making sense of
parallel fibers. Human Movement Science 21:411-421 (2002).
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Citations of web information

List of animals by number of neurons.
http://en.wikipedia.org/wiki/List of animals by number of neurons

Anatomy Explorer. This directs to the cerebellar peduncle:
http://www.innerbody.com/image nerv02/nerv62-new.html

Some zebrin stains:
https://www.bcm.edu/research/labs/roy-sillitoe/gallery

Any papers by Stefan Pulst and colleagues can be downloaded from here:
http://pulstlab.genetics.utah.edu/Publications.html

eDoctor Online medical atlas. Gross anatomy on the cerebellum.
http://www.edoctoronline.com/medical-atlas.asp?c=4&id=21803




Glossary Terms

From:

http://sites.sinauer.com/neuroscience5e/flashcards19.html

Asterisks represent the more important terms:



* Basket Cells

Inhibitory interneurons in the cerebellar cortex whose cell bodies are located within the Purkinje cell
layer and whose axons make basketlike terminal arbors around Purkinje cell bodies.

e Cerebellar Ataxia *

A pathological inability to make coordinated movements, associated with lesions to the cerebellum.

* Cerebellar Peduncles *

Three bilateral pairs of axon tracts that carry information to and from the cerebellum. The superior
cerebellar peduncle, or brachium conjunctivum, is an efferent motor pathway; the middle cerebellar
peduncle, or brachium pontis, is an afferent pathway arising from the pontine nuclei. The smallest but
most complex is the inferior cerebellar peduncle, or restiform body, which encompasses multiple
pathways.

* Cerebrocerebellum *

The part of the cerebellar cortex that receives input from the cerebral cortex via axons from the pontine
relay nuclei.

* Clarke’s Nucleus

A group of relay neurons located in the medial aspect of the dorsal spinal column. Component of a
cerebellar motor pathway important in processing proprioceptive input. Also called the dorsal nucleus of
Clarke.

e Climbing Fibers *

Axons that originate in the inferior olive, ascend through the inferior cerebellar peduncle, and make
terminal arborizations that invest the dendritic tree of Purkinje cells.

* Cuneate Nuclei

Sensory relay nuclei that lie in the lower medulla; they contain the second-order sensory neurons that
relay mechanosensory information from peripheral receptors in the upper body to the thalamus.



* dysdiadochokinesia

Difficulty performing rapid alternating movements.

* dysmetria

Inaccurate movements due to faulty judgment of distance, especially over- or underreaching.
Characteristic of cerebellar pathology.

* Inferior Olive *

Prominent nucleus in the medulla; a major source of input to the cerebellum. Also called inferior olivary
nucleus.

* Intention Tremor

Tremor that occurs while performing a voluntary motor act. Characteristic of cerebellar pathology. Also
called action tremor.

 Nystagmus *

Literally, nodding. Refers to repetitive movements of the eyes normally elicited by large-scale movements
of the visual field (optokinetic nystagmus). Nystagmus in the absence of appropriate stimuli usually
indicates brainstem or cerebellar pathology.

* Pontine Nuclei *

Collections of neurons in the pons that receive input from the cerebral cortex and send their axons across
the midline to the cerebellar cortex via the middle cerebellar peduncle.

* Red nucleus *

A midbrain structure involved in motor coordination, especially in non-human mammals.

* Spinocerebellum *

Region of the cerebellar cortex that receives input from the spinal cord, particularly Clarke's nucleus in
the thoracic spinal cord.

* Vestibulocerebellum

The part of the cerebellar cortex that receives direct input from the vestibular nuclei or vestibular nerve.



Other Terms to recognize in the context of this lecture *

Efferent
Afferent
Ispilateral signs
Molecular layer
Granule layer
Purkinje cell
Arbor vitae
Deep cerebellar nucleus
Glutamate
GABA

Stellate cell
Golgi cell

Parallel fiber
Climbing fiber
Mossy fiber
Superior peduncle
Middle peduncle
Inferior peduncle
Pons

Pontine nuclei
Thalamus

Motor cortex
Inferior olive
Bergmann glia
Beam

Calcium

Intrinsic firing
Compartmentation
Zebrin
Spinocerebellar ataxia
Polyglutamine disease
Anticipation

Gain of toxic function
Rotarod

Schmahmann
Spinocerebellar tract
Nystagmus

Slow Saccades



