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Two-way ANOVA shows a difference between wild-type and transgenic Q72 mice (L68) at
16, 24, and 36 weeks but not at 5 weeks. Bonferroni post-hoc tests. ** p<0.01; ***
p<0.0001
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Transgenic mouse models displaying hyperactivity:
SCA3 — NMR spectroscopy. Increased glycolysis in the brain.

Huntington’s Disease — hyperactive (2). (caspase 6 fragment — phenotype sounds
partly similar to our BAC mice; NMDA selective activation = fluctuations in
intracellular Ca2+ levels and reduced AMPA receptors).

Alzheimer’s Disease — hyperactive (beta-amyloidosis).

mMGIu2R potentiators — hyperactive.

Cav2.2 KO mice — hyperactive.

Hermansky-Pudlak Syndrome — hyperactive (otolith defects, imbalance).

Causes of circling behavior:

Bronx Waltver mouse. Caused by striatal asymmetry. Model for hearing and
vestibular dysfunction.

Hypothyroid mouse with non-functioning thyroid. Affected mice had 40% fewer
midbrain dopamine neurons (substantia nigra). Much slower than our mice.

Epistatic circler mouse. Bilateral malformation of the lateral semicircular canal and
duct in the inner ear. No vestibuloocular reflex.
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Fg. 4. Activity analyses. (A and B) Home cage attivity analyses revealed hyperactivity of transgeni¢ HDPromM[TH 48 mics af the age of 4 to § months Mice were lept for 23 hin
Labvlaster cages (TSESystems) and their activity during the light and the darl phase (hour S to hour 1 7) was récordad by the number of beam brealis. Shown are the total rumbers
of beamn brealis in 15 min intervals (A) During the first 2 hin the LabMaster cage s, HDPromM[D148 mice (bladh squares) were ggnificantly mare active than control mice (grey
toangles). (¥¥p<0.05; *¥¥p_0.001). Error bars, SENL (B) At the baginning of the darli phase, tontrol mice (gray ling] wereé mor attivé than HDPromV[TH 48 mice (blad brolien
ling); howsever, their activity decreased mors strangly {141 beam brealis/ 15 muin) during the 12hin the darl phase than the activity of HDPrormV{[DH 48 mice [ 88 beam brealss
15min), résulting in a higher activity of HDPromM[DM 48 mice af the #nd of the darli phase (*#p<0.05). Shown is the mean of 12 transgeni¢ and 10 ¢ontrol mite. Far £larity, no &rrar
bars are shown (C-F) Open field analyse s révealed hypéractivity and reduced anxiety in HDPromW[TH4 8 mice af the age of 14 months {mean of 18 transgenic and & tontrol mice).
(C) Plot of the moved tracl in the aréna during 15 min Shown are two réprésentative xamples. While the wildtype mouse ( tontral) spénd most of the timein the margin aréa and
avoidad the tenter, the HDPromM[D1 48 mouse evenly moved throughout the aréna without any preferences. (DY) HDPromMV{[TH 48 mice moved Jonger distanees in the open field
aréna during the first 8 min The differénces inintérva/minuté 2 and 7 are sgnificant { p<0.05). (E) No differénee between ransgenic and control mice was observed régarding the
distante moved n the margin area (région 1) of the aréna (F) Distante mice moved inthe transition aréa between the margin and the ténter (région 2). HDPromM[TH48 ruce
moved (at four intervals sgnificandy) Jonger distances in the transition ar#a, indicating fraquent thanges between the ¢enter and the margn
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Table 1. Comparison between an Infantile SCA7 Patient
and Sca7 % Mice

Symptoms Infantile SCA7 Patient  Sca7%*%*¢ Mice
Age of onset 1 month 5 weeks
Weight loss v v

Ptosis v v

Visual impairment v

Ataxia v v

Muscle wasting v v

Kyphosis v v

Tremors v v

Death 6 months 4-5 months

Symptoms of an infantile SCA7 patient are compared with those of
Sca7®%% mice. This patient is an individual V-2 from BASCA kin-
dred (Benton et al., 1998), and expanded CAG repeats from this
patient were used to constructa targeting vector (see Experimental

Procedures). vmarks each symptom manifested in patient and
Sca7¥% %0 mijce.
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Figure 1. Generating Sca7?%%5¢ Mice

{A) Targeting scheme. The top diagram shows a simplified version of mouse Sca? locus near exons 3 and 4. Targeting construct introduced
266 CAG repeats (inverted triangle) and flanking regions from human SCA7Y into exon 3, obtaining a targeting frequency of 4%. Electroporation
of Cre recombinase into the positive ES clones allowed the excision of the Neomycin (Neo¥Thymidine kinase (Tk) selection cassette (shown
as an open box) from the targeted locus. P indicates a probe used for Southern analysis. Red arrowheads indicate ioxP sites. Abbraviations
are as follows: 3, exon 3; 4, exon 4; 3°, engineered exon 3 with 266 CAG repeats; RY, EcoRV; Rl, EcoRl; S, Scal; and B, BamHI.

{B) Germline transmission of a targeted allele. Southern analysis of EcoRl-digested tail DNA revealed 15.2 kb wild-type and 10.3 kb mutant
bands in Sca7?®%5% mjce. Only the 15.2 kb band was detected from wild-type (WT) mice.

{C) Ataxin-7 is predominantly nuclear in the cerebellum, and expanded ataxin-7 is expressed in vivo. Both wild-type and mutant



