Functional Characterization of Ataxin-2

Karsten Strauss, 10/13/08

Spinocerebellar ataxias

- Clinically and genetically heterogenious
- Disease pattern: Loss of balance and motor coordination
- Pathogenesis: Dysfunction/Degeneration of the cerebellum and adjacent tissues/connections
- Age of onset: Normally between the 3rd and 5th decade
- Prevalence: 3-7 in 100.000
- Identified genetic loci: 29 named SCA1-SCA29

Spinocerebellar ataxias

Table 2 Summary of the genes and molecular defects accounting for the SCAs							
SCA subtype	Genomic location	Gene/locus	Protein	Mutation	References		
SCAI	6p22.3	ATXNI	Ataxin I	CAG repeat	Orr et al. (1993)		
SCA2	12q24.13	ATXN2	Ataxin 2	CAG repeat	Imbert et al. (1996)		
					Pulst et al. (1996) Sanpei et al. (1996)		
SCA3	14q32.12	ATXN3	Ataxin 3	CAG repeat	Kawaguchi et al. (1994)		
SCA4	l6q24-qter	SCA4	U	U	Flanigan et al. (1996)		
SCA5	11q13.2	SPTBN2	Beta-III spectrin	D, MM	lkeda et al. (2006)		
SCA6	19p13.13	CACNAIA	CACNAIA	CAG repeat	Zhuchenko et al. (1997)		
SCA7	3p 4. l	ATXN7	Ataxin 7	CAG repeat	David et al. (1997)		
SCA8	13q21	KLHLI AS	Kelch-like I	CTG repeat	Koob et al. (1999)		
SCA9	Reserved	U	U	U	-		
SCA10	22q13.31	ATXNI0	Ataxin 10	ATTCT repeat	Matsuura et al. (2000)		
SCALL	15q14-q21.3	SCALL	U	U	Worth et al. (1999)		
SCA12	5q32	PPP2R2B	PPP2R2B	CAG repeat	Holmes et al. (1999)		
SCA13	19q13.33	KCNC3	KCNC3	MM	Waters et al. (2006)		
SCA14	19q13.42	PRKCG	PRKCG	MM	Chen et al. (2003 <i>a</i>)		
SCA15	3p24.2-pter	U	U	U	Gardner et al. (2005)		
SCA16	8q23-q24.1	U	U	U	Miyoshi et al. (2001)		
SCA17	6q27	ТВР	TBP	CAG repeat	Nakamura et al. (2001)		
SCA18	7q31-q32	U	U	U	Devos et al. (2001)		
SCA19*	Ip21-q21	U	U	U	Verbeek et al. (2002)		
SCA20	Ú .	U	U	U	Knight et al. (2004)		
SCA21	7p21.3-p15.1	U	U	U	Vuillaume et al. (2002)		
SCA22*	lp21-q23	U	U	U	Chung et al. (2003)		
SCA23	20p13-p12.2	U	U	U	Verbeek et al. (2004)		
SCA24	lp36	U	U	U	Swartz et al. (2002)		
SCA25	2p21-p15	U	U	U	Stevanin et al. (2005)		
SCA26	19p13.3	U	U	U	Yu et al. (2005)		
SCA27	13q33.1	FGF14	FGF14	MM	van Swieten et al.(2003)		
SCA28	18p11.22-q11.2	U	U	U	Cagnoli et al. (2006)		
DRPLA	12p13.31	ATNI	Atrophin I	CAG repeat	Koide et al. (1994)		
Undefined [™]	16q22.1	PLEKHG4	Puratrophin I	5′ SNS	Nagafuchi et al. (1994) Ishikawa et al. (2005)		

*SCAs 19 and 22 are likely allelic forms of the same gene.

**The gene encoding puratrophin I lies on the same chromosomal region where the SCA4 gene localizes. Genes in genomic location are noted according to Ensembl. D, deletions; MM, missense mutations; SNS, single-nucleotide substitutions; U, unknown.

SCA29 3p26 Dudding et al. (2004) Source: OMIM

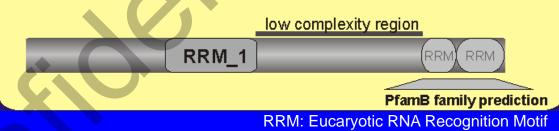
SCA2 overview: Disease

- SCA2 causes about 15% of the spinocerebellar ataxias
- SCA2 is caused by an expansion of a polyQ repeat in the ataxin-2 gene
- The normal polyQ repeat length varies about 14-30 CAGs whereas the disease related SCA2 protein contains more than 31 CAG repeats
- The age of onset as well as the severity of SCA2 is inversely correlated to the polyQ repeat length

The function of the ataxin-2 protein is mostly unknown

SCA2 overview: Protein domains

SBM	-	SH3-binding motif (protein-protein interactions)
Lsm	-	like-SM domain (RNA binding)
Sm	-	Splicing motif
Lsm-AD	-	SM associated domain with trans-Golgi-signal and ER export signal
PAM2	-	PolyA binding protein interacting motif


→ RNA interaction

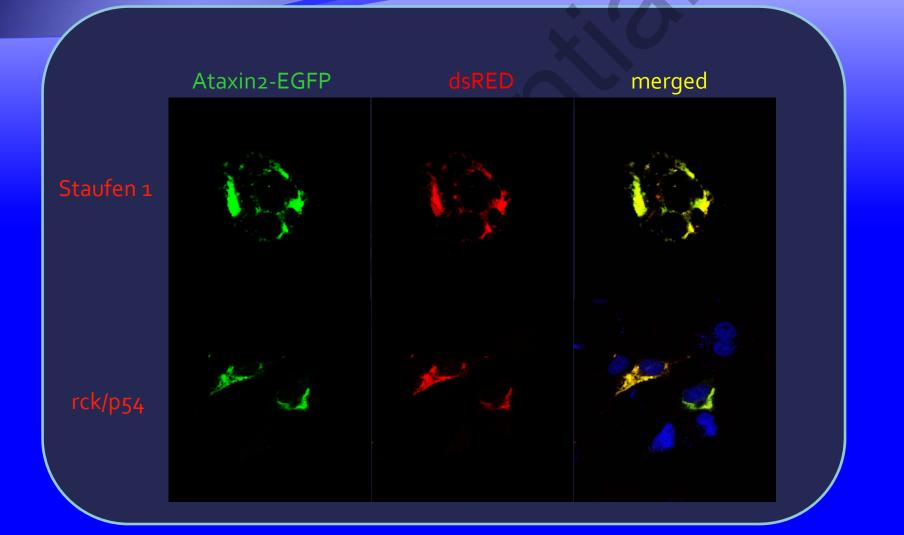
→ probably Golgi associated localization or function (cell type?)

Interaction with A2BP1

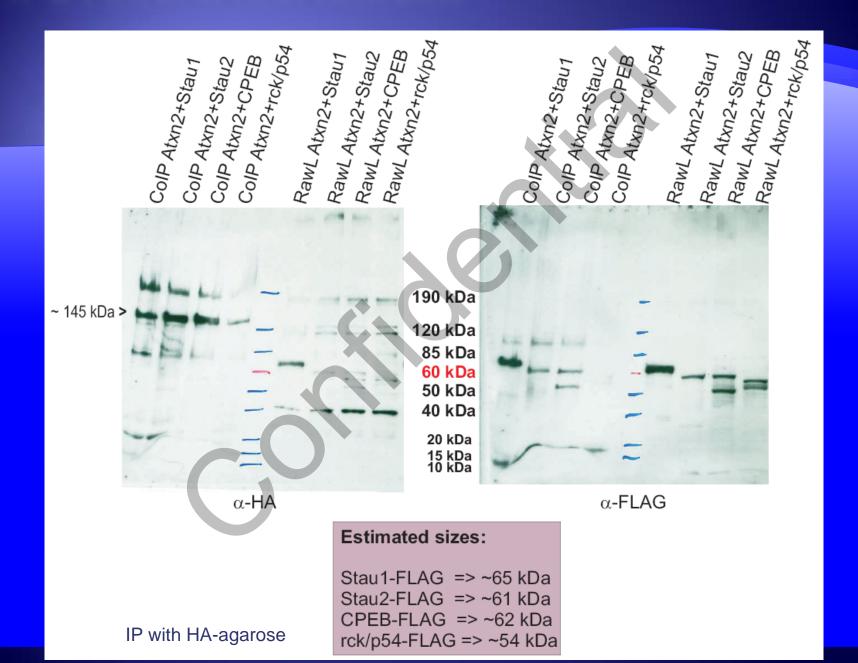
- First identified interaction partner: A2BP1
- Nuclear as well as cytoplasmic localization
- mRNA binding motifs
- mRNA splicing

- Disease releated links:
 - A2BP1 gene maps to an locus for autism
 - Chromosome 16 translocation in two cases of epilepsy and mental retardation disrupt A2BP1 gene

Options for functional studies


Interaction studies with proteins of the mRNA pathway

- mRNA transport
- Translation
- mRNA degradation
- Functional association studies with A2BP1
 - Interaction with wt and mutated atxn2 forms → differences?
 - Splicing alterations due to atxn2 interaction
- Ataxin-2 degradation


- Are there differences between short and long polyQ forms

Is the proteasomal degradation decreased for higher polyQ repeat

Ataxin-2 interacting proteins

SCA2 interacting proteins

SCA2 interacting proteins

- Staufen 1

- Staufen 2

mRNA transport

mRNA transport

- rck/p54

- CPEB

→ RNA helicase

→ translational regulator

mRNA transport

cytoplasm / (nucleus)

cytoplasm / nucleus

cytoplasm / PBs

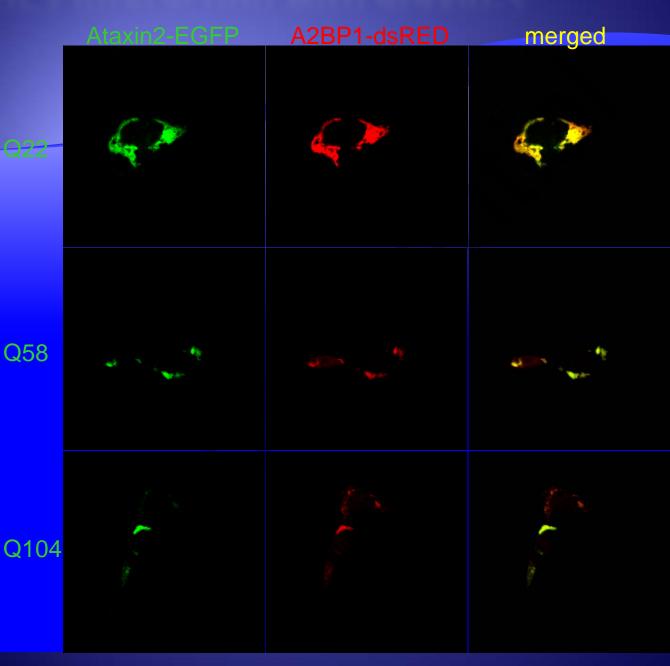
cytoplasm / SGs

SCA2 interacting proteins

- Conclusions:

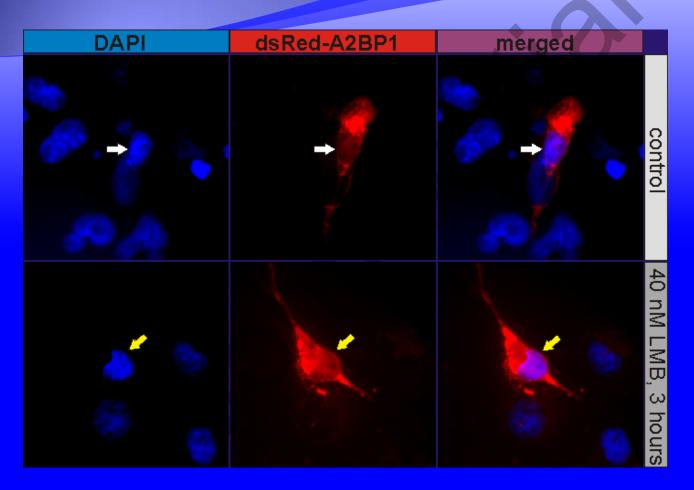
Ataxin-2 interacts with proteins of the mRNA pathway

Interaction was shown mainly with mRNA transport proteins


Published interactions include the translational regulator PABP

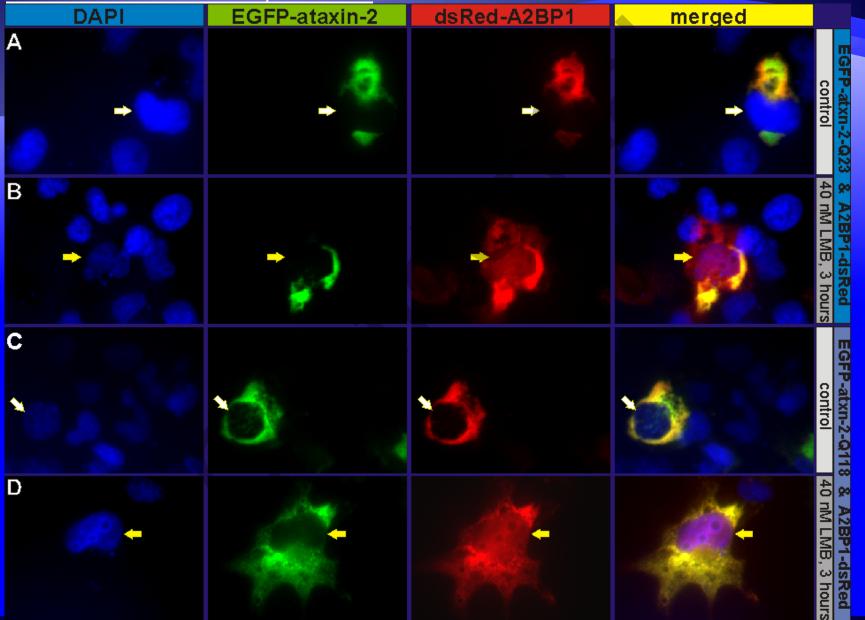
- Future :

Interaction assays with other proteins of mRNA pathways and eIF4A1, eIF4A2 and eIF4E as key proteins of translational initiation

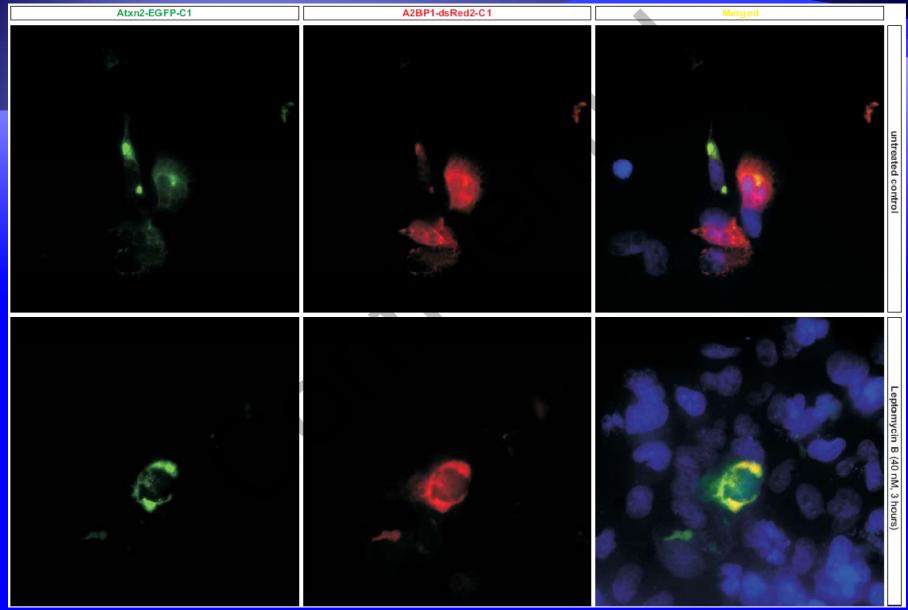

Proof of interaction with observed interaction partners wild-type ⇔ expanded polyQs

A2BP1 interaction with ataxin-2

A2BP1 interaction


Nucleo-cytoplasmic shuttling of A2BP1

Leptomycin B (LMB): Specific nuclear export inhibitor which inhibits exportin-1


A2BP1 interaction

Recruitment of A2BP1 by ataxin-2:

A2BP1 interaction

Recruitment of Ataxin-2-Q58:

A₂BP₁ interaction

Recruitment of A2BP1 by ataxin-2 is dosage depended:

DAPI	EGFP-Ataxin-2	dsRed-A2BP1	merged
А	*		ស
	100 C		Du se
8.			
			FF FF
			at
			EGFP-atxn-2
В			
			100 1
			ng E
			<u>i</u>
			P.
			EGFP-atxn-2

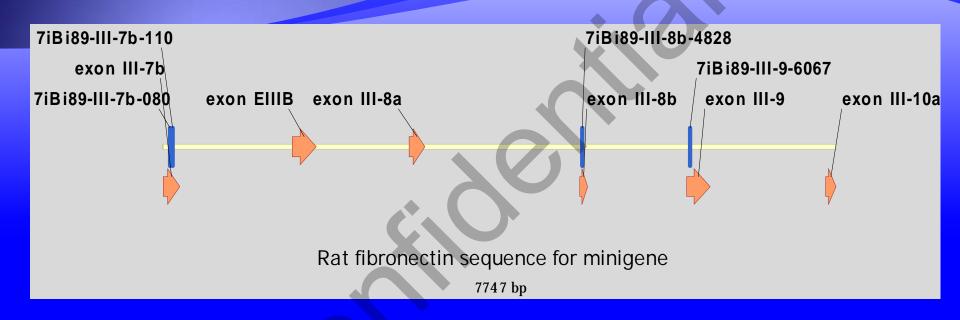
* Extended exposure for EGFP staining

A2BP1 mediated splicing

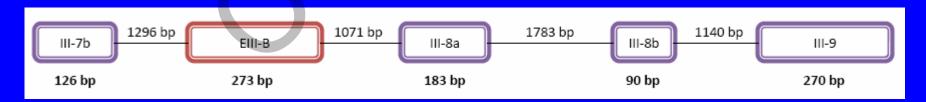
- 1. Alter increased levels of ataxin-2 the splicing function of A2BP1?
- 2. Is there a functional inhibition of A2BP1 splicing for expanded polyQ repeats?

** Source: Genomics Institute of the Novartis Research Foundation/Genecards

A2BP1 mediated splicing

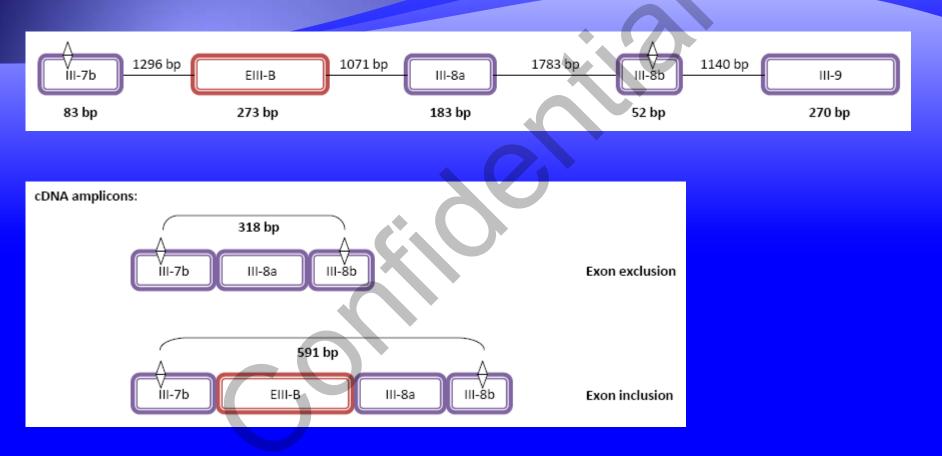

- Nucleotide recognition sequence of A2BP1/Fox-1: UGCAUGU
- A2BP1 mediates exon inclusions and exclusions
- Splicing recognition is similar for RBM9/Fox-2
- Expression pattern for RBM9/Fox-2 is ubiquitous A2BP1/Fox-2 has a more specific expression pattern
- A2BP1/Fox-1 is expressed in Purkinje cells and has a more nuclear pattern over fox-2 but fox-2 has the higher expression in PC's*

A2BP1/Fox-1 is expressed in granule cells but not Fox-2**


- * Source: Genomics Institute of the Novartis Research Foundation/Genecards
- ** Source: Douglas Black, UCLA

Rat fibronectin 7iBi89 minigene

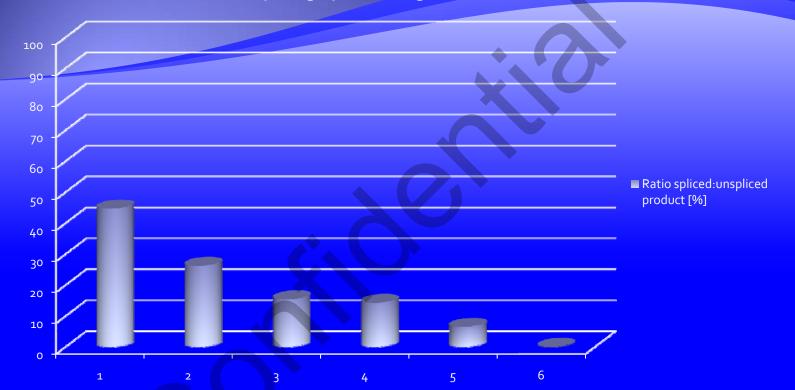
A2BP1 mediated exon inclusion



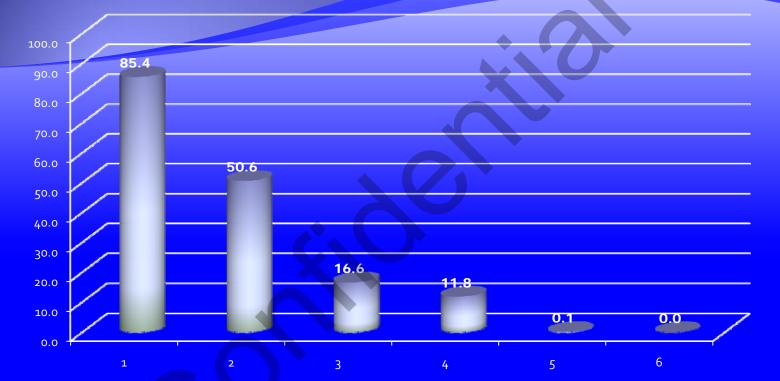
> Nested PCR instead of a hot PCR

Rat fibronectin 7iBi89 minigene

Amplicons of 2nd PCR


> A2BP1 mediated exon inclusion

Cotransfection of A2BP1, ataxin-2 and the 7iBi minigene changing the amount of ataxin-2


Lane	1	2	3	4	5	6
A2BP1	250	250	250	250	250	0
Atxn2	0	191	383	574	765	383
pCMV- HA	160	0	0	0	0	160
Ratio	0:1	0.5:1	1:1	1.5:1	2:1	1:0

Alteration of A2BP1 splicing by increasing Atxn2 levels

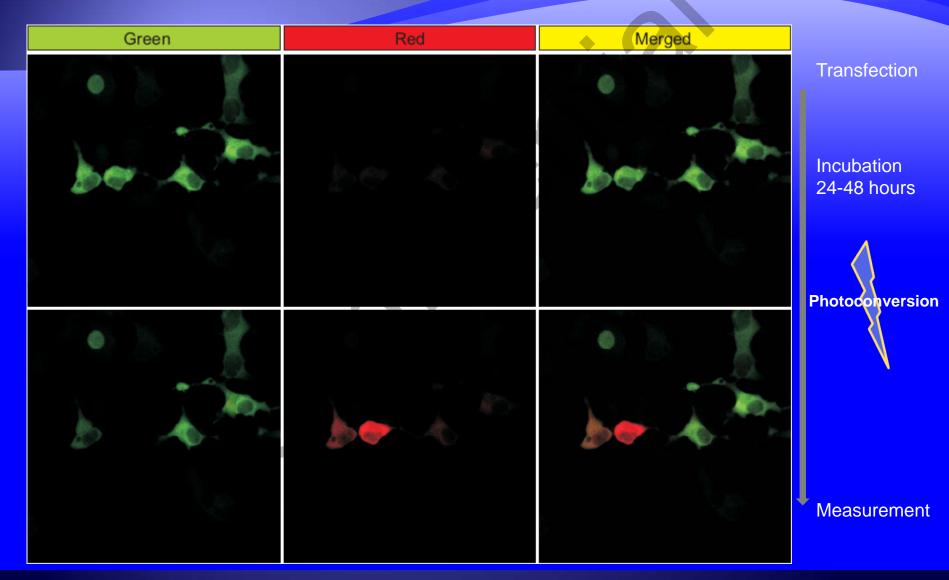
Lane	1	2	3	4	5	6
A2BP1	250	250	250	250	250	0
Atxn2	0	191	383	574	765	383
pCMV- HA	160	0	0	0	0	160
Ratio	0:1	0.5:1	1:1	1.5:1	2:1	1:0

Alteration of A2BP1 splicing by increasing Atxn2 levels

Lane	1	2	3	4	5	6
A2BP1	250	250	250	250	250	0
Atxn2	0	191	383	574	765	383
pCMV- HA	160	0	0	0	0	160
Ratio	0:1	0.5:1	1:1	1.5:1	2:1	1:0

If atxn2 forms with expanded polyQ repeats are more stable to the degradation pathways of the cell than wt protein, they accumulate in the cell.

Elevated levels of atxn2 alter the function of A2BP1


Accumulation of atxn2 and atxn2 intermediate degradation products inhibit the proteasome > Proteasomal stress

Determination of the atxn2 stability/degradation time

- Pulse-chase experiment with radioactive labelled Methionine
- Pulse-chase color changing fluorescent protein Kikume

Ataxin-2 degradation: Kikume vector

Photoconversion of Kikume-green to Kikume-red

Ataxin-2 degradation: Kikume vector

- Transfect ataxin-2-Kikume-Qxx
- Incubate for 24-48 hours
- Photoconvert ataxin-2

Ataxin-2

 Incubate for 2, 4, 6, 8, 10, 12, 14, xx hours New synthesized ataxin-2 is green

Ataxin-2 Ataxin-2

- > Measure ratio between red and green ataxin-2 fluorescence
- Are there difference in the fluorescence ratio's for different polyQ's

Conclusions

- Ataxin-2 interacts with proteins of the pre-mRNA/mRNA pathway
- Ataxin-2 recruits A2BP1 and Staufen
- Overexpression of ataxin-2 alters the function of A2BP1 as a splicing regulator

Future prospects

 Interaction assays between ataxin-2 and it's interacting proteins to determine if different polyQ repeats alter the interaction efficiency

➔ Bioprocessor assays

Protein-protein interaction core of the U

Immobilization of recombinant atxn2 Interacting protein is driven over the immobilized atxn2, interaction efficiency is measured by the bioprocessor

Future prospects

Locating A2BP1 splicing targets which are expressed in Purkinje cells

→ Splicing/gene expression chips for overexpressed atxn2...

Target for chip and PCR splicing assay

Mouse brain wt <> Q58/Q127 or cell line which expresses a variety of the target genes

Future prospects

 Interaction studies between ataxin-2 and RBM9/Fox-2 as A2BP1 and RBM9 have the same recognition sequence and could rescue a misfunction of the other protein, expression levels of RBM9 in the cerebellum (mouse) and interaction possibilies between Atxn2 and RBM9 must be determined

Bioprocessor and/or standard IP and colocalization via microscopy

→ If interaction is positive, determine if atxn2 isable to recruit RBM9
→ If not, IHC to show if RBM9 is expressed in Purkinje cells

→ Determine if A2BP1 expression is elevated under stress conditions