Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2

Jing Liu, Tie-Shan Tang, Huiping Tu, Omar Nelson Emily Herndonm,, Stefan Pulst, Ilya Bezprozvanny

Ilya Bezprozvanny PhD

Ca⁺⁺ signaling

- Structure, function and modulation of the IP3R
- Synaptic voltage-gated Ca⁺⁺ channels
- Deranged Ca⁺⁺ signaling and neurodegenerative disorders: AD, HD, SCA

Ilya Bezprozvanny PhD

Ca⁺⁺ signaling

- Structure, function and modulation of the IP3R
- Synaptic voltage-gated Ca⁺⁺ channels
- Deranged Ca⁺⁺ signaling and neurodegenerative disorders: AD, HD, SCA

NEURAL CALCIUM SIGNALLING

Berridge (1998) Neuron, 21: 13-26

<u>Ca++ signaling</u>

- Fast neurotransmitter release
- Mediates timing of after
 - hyperpolarization
- Gene transcription
- Synaptic plasticity

Berridge (1998) Neuron, 21: 13-26

Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2

Jing Liu, Tie-Shan Tang, Huiping Tu, Omar Nelson Emily Herndonm,, Stefan Pulst, Ilya Bezprozvanny

- SCA 2 and Purkinje cell degeneration
 - Expanded polyQ repeat (>32) results in pathological state
 - PC degeneration occurs earliest
- Internal Ca++ mediated by the IP3R & RyR
 - IP3R and RyR extensively expressed in ER membrane :
 - most CNS neurons express cardiac RYR2
 - Purkinje cells express skeletal muscle RyR1

Hypothesis

Does mutant ATX-2 result in abnormal Ca++ signaling in Purkinje cells?

Experimental Design

- Animals: WT & Q58 TG
- Cellular
 - In vitro binding assay
 - PC Cell culture and Immunostaining
 - In Vitro apoptosis cell death
- Physiological
 - E-phys recording
 - Calcium imaging
- Pharmacology
 - Dantrolene feeding

• Behavioral

- Motor coordination: Beam cross; accelerating rotarod
- Anatomical
 - Stereological analysis
 - Pathology
- Statistics: two-tailed Student's unpaired ttest...AND?

In vitro binding assay

- Pull down exp indicates association of proteins
- Atxn2 plasmids transformed into COS7)mixed with purified C-Terminal IP3 fragments (GST-IC10)
- Full length IP3 fragmment (T443)
- Western-blot of lysate

- Rat IP3R1 and Atxn 22/ 58 proteins in sf9 cells
- ER purified and fused to planar lipid bilayers
- Channels activated by 100nm or 2µM of IP3
- Recording currents?

Purkinje Cell culture

- Neonatal cerebellar dissected
- Tissue digested and PC cultured
 - Day 14 cells stained with anti-IP3R1 (T443,green) and DAPI (red)

- DHPG stimulated calcium release mGLUR (5)
- Fura-2 CA++ sensitive dye

Note: this should not be a t-test

- GLU-induced cell death: 200 μM GLU for 7h @ 37c
- Anti-IP3R1 (T443, green), TUNEL for apoptosis (red), DAPI (blue)

 PC treated with GLU and Dantrolene
Anti-IP3R1

(T443, green) and TUNEL (red)

Motor coordination: beam walk

- 3 consecutive days (4 t/d)
- Animals treated with Dantrolene from age 2-11 months
- Tested on 3 different widths of beam

 Length of beam?

Note: cannot use Students t-test

Rotarod

- Test of motorcoordination
- 3 trials per day for 3 days

Data
represents the avg of 3 trials
on test day

Note: cannot use Students t-test

 Calbindin-D 28K staining of WT (A) and experimental animals (B) at 12 months age

- C) Molecular layer thickness compared across groups
- D) Number of PC cells across groups

Note: cannot use Students t-test

Fig 9

No significant differences detected in pathological analysis

	Number of mice analyzed	No. of mice per group with any degree of inflammation			
Group name					
		Sk muscle	heart	liver	
WT Ctrl	6	1	1	3	
58Q Ctrl	5	0	0	1	
WT Dan	5	1	0	3	
58Q Dan	5	0	0	3	

Dantrolene feeding

Group numbe r	Group name	Number of female mice	Mouse genotype	Single dose (2/wk) (50µl)	Drug dosage (mg/kg/3 days)	ML thickness (µm)	PC counts
1	WT Ctrl	9	WT	50 µl PBS	PBS	176 ± 5	221240 ± 6767
2	WT Dan	12	WT	100 μg Dantrolene	5 mg Dantrolene	173 ± 3	224239 ± 5171
3	58Q Ctrl	10	SCA2-58Q	50 µl PBS	PBS	166 ± 3	191305 ± 4459
4	58Q Dan	9	SCA2-58Q	100 μg Dantrolene	5 mg Dantrolene	175 ± 5	217629 ± 8951

